Scheurvorming volgens Eurocode 23200978Scheurvormingvolgens Eurocode 2Het scheurgedrag van betonconstructies is reeds decennia het onder-werp van experimenteel en theoretisch onderzoek. Functionaliteit, esthe-tica en duurzaamheid zijn de voornaamste aspecten gekoppeld aan hetscheurgedrag. Deze aspecten maken dat het beschrijven van het scheur-gedrag onderdeel uitmaakt van de betonvoorschriften. Eurocode 2`Beton' geeft rekenregels en detailleringstabellen. De achtergrondenhiervan worden in dit artikel besproken.Toelichting op rekenregels en detailleringstabellenNa het ontstaan van een scheur wordt de staalkracht doorconstant veronderstelde aanhechtspanningen aan het betonovergedragen over de overdrachtslengte lt(fig. 2).De grootste (`karakteristieke') scheurwijdte wordt gevonden alsde overdrachtslengten van naast elkaar gelegen scheuren elkaarAcNAsAcAsssscssscssr1ssr1fct, e?fct, e?ssr2EtTrekstaafmodelHet scheurgedrag wordt beschreven uitgaande van het gedragvan een gewapende trekstaaf (fig. 1). Verondersteld wordt dathet betonstaal zodanig over de doorsnede is verdeeld dat overde omtrek sprake is van een uniform scheurenpatroon.De trekstaaf scheurt als de betontrekspanning gelijk is aan debetontreksterkte fct,eff. Direct voor het ontstaan van de scheur isde rek in het betonstaal nog gelijk aan de rek van het beton. Detotale kracht direct voor het ontstaan van de scheur is:Ncr = Ac fct,eff + AsEs__Ecfct,eff = Ac fct,eff (1+ae?) (1)waarin:? is de wapeningsverhoudingfct,effis de gemiddelde betontreksterkte op het moment dat deeerste scheurvorming wordt verwacht op te tredenAcis de oppervlakte van de betondoorsnede12Scheurvorming volgens Eurocode 2 32009 79juist niet overlappen; de scheurafstand is sr,max= 2lt. De karakte-ristieke scheurwijdte is de integraal van het verschil tussen destaal- en de betonrek over de maximale scheurafstand. Eenweergave met gemiddelde rekken geeft:wk = sr,max (esm ecm) (2)De factor ß is een maat voor de `vullingsgraad' van de rekfigu-ren (fig. 3, waarin r1 = `ongescheurd'; r2 = `direct na scheuren'):ecm = ßesr1 (3a)esm = esr2 ß (esr2 esr1) (3b)In deze twee uitdrukkingen wordt dezelfde waarde voor ßgehanteerd omdat de staal- en betonrekken complementairzijn: voor iedere doorsnede moet de som van de staal- enbetontrekkracht gelijk zijn aan de scheurkracht.Als het scheurenpatroon voltooid is, worden bij het verhogenvan de uitwendige belasting of het vergroten van de opgelegdevervorming geen nieuwe scheuren meer gevormd; de maximalescheurafstand blijft gelijk aan 2lt. Figuur 4 toont het verloopvan de staal- en betonrek. De staalrek in de scheur is nu toege-nomen tot es2(2 = `na scheuren, bij kracht > scheurkracht')De maximale (`karakteristieke') scheurwijdte is nu:wk = sr,max (esm ecm) = 2lt (es2 ßesr2) (4)LiggerHiervoor is uitgegaan van een staaf belast op zuivere trek. Ookde scheurwijdte in een op buiging belast element moet getoetstkunnen worden. De besproken theorie kan nagenoeg ongewij-zigd worden gevolgd, zij het dat rekening moet worden gehou-den met een paar aspecten die specifiek zijn voor de ligger.Spanningsverloop over de liggerhoogteDe trekstaaf wordt over de gehele doorsnede belast tot eenuniforme spanning. In de ligger belast op buiging (eventueel incombinatie met een normaalkracht) kan slechts een gedeeltevan de doorsnede onderworpen zijn aan trekspanningen en issprake van een spanningsgradiënt over de hoogte van de door-snede.Effectieve werkingszone betonstaalBetonstaal heeft een zekere werkingszone voor het beheersenvan de scheurwijdte; buiten deze zone is niet langer sprake vaneen scheurwijdte-beperkende invloed. Daar waar in scheur-wijdte-uitdrukkingen wordt gesproken over de wapeningsver-houding van een trekstaaf, moet deze worden berekend opbasis van de betondoorsnede waarover het betonstaal effectiefscheurwijdten beheerst. Experimenteel onderzoek heeft aange-toond dat de hoogte van deze zone gelijk is aan hc,eff= 2,5(h d).De wapeningsverhouding die hiermee wordt berekend is ?s,eff.Tijdsafhankelijke effecten en herhaald belastenLangdurig en/of herhaald/wisselend belasten heeft invloed opde grootte van de aanhechtspanningen: bij langdurig belastentreedt `aanhechtkruip' op, waardoor bij dezelfde aanhechtspan-ning een grotere slip optreedt. Of, anders gesteld, bij dezelfdeslip is de aanhechtspanning lager. Bij herhaald/wisselend belas-ten treedt een vergelijkbaar effect op: door voortgaande inwen-dige beschadigingen in de zone direct rond de wapeningsstaafneemt de slip toe bij gelijkblijvende aanhechtspanning.ScheurtheorieDe in voorgaande paragrafen gepresenteerde theorie is inNEN-EN 1992-1-1 niet alleen gebruikt om tabellen tenbehoeve van scheurbeheersing op te stellen, maar is ookgebruikt om scheurwijdten te berekenen; respectievelijk aange-duid met `scheurbeheersing zonder directe berekening'(NEN-EN 1992-1-1 art. 7.3.3) en `directe berekening'(NEN-EN 1992-1-1 art. 7.3.4).De karakteristieke scheurwijdte wordt, overeenkomstiguitdrukking (4), berekend uit de maximale scheurafstand entwee staalrekken, es2en esr2.Voor esr2, de staalrek in de scheur optredend onder de scheur-kracht van de doorsnede, kan, uitgaande van een trekstaaf,worden geschreven (zie ook uitdrukking (1)):esr2 =Ncr____EsAs=fct,eff_____Es?s,eff(1 + ae ?s,eff) (5)De eerder geïntroduceerde factor ß, gebruikt om de over deoverdrachtslengte gemiddelde staalrek te berekenen uit destaakrek in de scheur, wordt nu kt genoemd. Aldus volgt (zieook uitdrukking (4)):es2 ktesr2 =ss ktfct,eff____?s,eff(1 + ae ?s,eff)__________________Es(6)waarin:kt= 0,6 bij kortdurende belasting= 0,4 bij langdurende belastingDe tweede component in de teller is de zogenoemoemde`tension stiffening', de samenwerking tussen het betonstaal enhet beton tussen de scheuren voortkomend uit krachtsover-dracht door aanhechting (constante aanhechtspanning: tbs).dr.ir.drs. René BraamTU Delft, fac. CiTG1 Het scheurgedrag van een gewapende trekstaaf2 Een gedeelte van de trekstaaf met, van boven naar beneden,het verloop van de spanningen juist voor scheuren en directnadat de scheur is ontstaanScheurvorming volgens Eurocode 23200980ingevuld in uitdrukking (4) (karakteristieke scheurwijdte).De parameters k3= 3,4 en k4= 0,425 (NEN-EN 1992-1-1 art.7.3.4(3) & NB) worden reeds ingevuld. Het resultaat is:wk = (3,4c + 0,425k1k2?____?s,eff)ss__Es(1 ktssr2___ss) (11)De staalspanning direct na scheurvorming (ssr2) volgt uit descheurkracht van de `verborgen trekstaaf', zie de uitdrukking (5).Echter, in Eurocode 2 is nog een minimumwapeningseis metbetrekking tot scheurbeheersing opgenomen, zie NEN-EN1992-1-1 art. 7.3.2.(1) & vgl. (7.1). Ook uit deze eis volgt eenstaalspanning direct na het optreden van scheurvorming:ssr2 =fct,eff Actkck_________As=fct,eff kck_______?eff(12)In uitdrukking (12) is de betontrekkracht direct vóór het optre-den van scheurvorming gelijk gesteld aan de staaltrekkrachtdirect ná het optreden van scheurvorming. In de betreffendeuitdrukking mag naar eigen inzicht een staalspanning wordeningevuld; zelfs ssr2= fykis toegestaan. In de toelichting bij deuitdrukking stelt Eurocode 2 echter wel dat het mogelijk is dateen lagere waarde van de staalspanning nodig kan zijn om tevoldoen aan de grens voor de scheurwijdte.OpmerkingHet is belangrijk duidelijk onderscheid te maken tussen de hiergeïntroduceerde wapeningsverhoudingen ?effen de reedsbekende ?s,effvan de `verborgen trekstaaf':?effheeft betrekking op het gedeelte van de doorsnede dat in hetongescheurde stadium onder trek staat; het is een variabele diewordt gebruikt bij het berekenen van de minimumwapeningbenodigd uit oogpunt van scheurbeheersing.?s,effheeft betrekking op de doorsnede waarbinnen in hetgescheurde stadium het betonstaal de scheurwijdten beheerst;het is een variabele die wordt gebruikt bij het beschrijven vanhet scheurgedrag van de `verborgen trekstaaf'.Om te voorkomen dat twee verschillende wapeningsverhou-dingen (?s,effen ?eff) in een uitdrukking worden gebruikt, wordtde wapeningsverhouding van de ongescheurde trekzone uitge-drukt in de wapeningsverhouding van het effectieve trekspan-Bij lage wapeningsverhoudingen is deze tweede componentrelatief groot. Daarom wordt een ondergrens voor de gemid-delde rek gehanteerd:esm ecm = 0,6ss__Es(7)De maximale scheurafstand, sr,max, wordt berekend uit de over-drachtslengte (fig. 2):sr,max = 2lt = 2(ssr2 ssr1)_________tbs,k?__4(8)Bij een niet-constante betontrekspanning over de doorsnedewordt hiervoor gecorrigeerd met de coëfficiënt k2. Deze is deverhouding tussen de gemiddelde en de grootste betontrekspan-ning en is 1,0 bij zuivere trek en 0,5 bij buiging. De aanhecht-spanning tussen het beton en het betonstaal wordt gekoppeldaan de betontreksterkte en wordt geschreven als tbs,k = k*1 fct.De beide coëfficiënten opnemen in de uitdrukking voor demaximale scheurafstand levert:sr,max = 2k2 fct____?s,eff1____k*1 fct?__4(9)Deze uitdrukking herschrijven en twee coëfficiënten k3en k4toevoegen om theoretische resultaten te kunnen afstemmen opexperimenteel verkregen resultaten geeft:sr,max = k3c + k1k2k4?____?s,eff(10)De coëfficiënt k3is toegevoegd omdat uitdrukking (9) bij hogewapeningsverhoudingen leidt tot te kleine scheurafstanden. InNEN-EN 1992-1-1 is ervoor gekozen de ondergrens uit tedrukken in de betondekking c op de langswapening.Scheurbeheersing met tabellenStaafdiameterIn Eurocode 2 is de theorie gebruikt om tabellen af te leidenwaarmee de wapening zo kan worden gedimensioneerd datwordt voldaan aan een scheurwijdte-eis. Hiertoe zijn uitdruk-kingen (6) (gemiddelde rek) en (10) (maximale scheurafstand)AsSr, max=2ltesesr2esr1esr1ecltlte sr2-e sr1e se ce s2e sr1lt lt43Scheurvorming volgens Eurocode 2 32009 813 Het verloop van de rekken ten gevolge van de scheurtrekkracht inhet gebied tussen twee scheuren op een onderlinge afstand 2lt4 Het verloop van de rekken van staal (boven) en beton (onder) tengevolge van een kracht groter dan de scheurtrekkracht in hetgebied tussen twee scheuren op een onderlinge afstand 2lt? = [wkEs__ss1______(1 kt) 3,4c][fct,eff kck_______sshcr__________2,5k'(h d)] 1________0,425k1k2(17)De volgende waarden worden nu aangehouden:Es= 2 · 105N/mm2kt= 0,4 (langdurende belasting)fct,eff= 2,9 N/mm2kc= 0,4 (zuivere buiging; de invloed verwerkend van despanningsverdeling over de ongescheurde trekzone(factor 0,5) en een toename van de inwendigehefboomsarm na het optreden van scheurvorming(factor circa 0,67h/0,8h = 0,83))k = 1,0 (geen invloed eigenspanningen; h < 300 mm)k1= 0,8 (geribd betonstaal; goede aanhechting)k2= 0,5 (buiging)k' = 1 (buiging)h d = 0,1 hhcr= 0,5 h (hoogte trekzone in ongescheurd stadium bijbuiging)3,4c = 85 mmInvullen levert:? = [wk2 · 105_____ss1___0,6 85][13,65_____ss] (18)Tabel 1 toont voor wk= 0,2 mm; 0,3 mm en 0,4 mm de resultatenvoor ss= 160 400 N/mm2. De tabel geeft tevens aan hoe, in Euro-code 2, deze waarden, uiteraard meestal naar beneden, zijn afge-rond op gangbare staafdiameters (zie tabel 7.2N in NEN-EN 1992-1-1). De resultaten zijn grafisch weergegeven in figuur 5.Als moet worden getoetst op een scheurwijdte die niet in tabel 1 isvermeld, kan de toelaatbare staafdiameter worden berekend doorde maximale staafdiameter voor een in de tabel vermelde scheur-wijdte te vermenigvuldigen met de verhouding:? = ?tabelwk,eis______wk,tabelwaarin:wk,eis> wk,tabelningsgebied. Dit kan relatief eenvoudig omdat in beide dezelfdehoeveelheid betonstaal aanwezig is; alleen de hoogte van detrekzone is anders: hcr, respectievelijk hc,eff:?eff =2,5k'(h d)___________hcr?s,eff (13)In deze uitdrukking is de variabele k' toegevoegd omdat bij eentrekstaaf met grote dikte en met randzonewapening zich aanzowel de onder- als de bovenkant van de doorsnede een effec-tief trekspanningsgebied bevindt. Als wordt uitgegaan van heff=2,5 (h d) en als Asde oppervlakte is van de totale doorsnedevan het betonstaal dat in de betondoorsnede aanwezig is, dan isk' = 2; bij buiging is slechts één zijde op trek gewapend en is,eveneens uitgaande van heff= 2,5(h d), k' = 1.In NEN-EN 1992-1-1 vgl. (7.9) is de uitdrukking voor de staal-spanning direct na het optreden van scheurvorming, ssr2, zieook uitdrukking (5), duidelijk te herkennen. In plaats van dezeuitdrukking wordt in vgl. (11) nu voor het beschrijven van ssr2gebruikgemaakt van vgl. (12).Uitdrukkingen (11)-(13) uitwerken levert de volgende uitdruk-king voor de staafdiameter:? =[wkEs__ss1___________________________(1 kt(fct,eff kck________?s,effhcr__________2,5k'(h d)1__ss))3,4c]?s,eff________0,425k1k2Om te kunnen vereenvoudigen wordt een conservatieve waardevoor de wapeningsverhouding van het effectieve trekspan-ningsgebied, ?s,eff, aangehouden. Deze wordt ?s,eff,mingenoemd.Voor ?effgeldt (zie ook vgl. (12) en NEN-EN 1992-1-1 vgl. (7.1)):?eff =As___Act=fct,eff kck_______ssr2Eerder was afgeleid:?eff =2,5k'(h d)__________hcr?s,eff (13)Hieruit volgt:?s,eff =hcr__________2,5k'(h d)?eff =hcr__________2,5k'(h d)fct,eff kck_______ssr2(15)Door in deze uitdrukking uit te gaan van ssr2= sswordt eenondergrenswaarde voor ?s,effgevonden, ?s,eff,min. Immers, altijdzal gelden dat ssr2, de staalspanning in de scheur op hetmoment dat scheurvorming optreedt, kleiner zal zijn dan ss,de staalspanning in de bruikbaarheidsgrenstoestand (BGT).Dus is:?s,eff,min =hcr__________2,5k'(h d)fct,eff kck_______ss(16)Uitdrukking (16) substitueren voor de ?s,effin uitdrukking (14)levert:staalspanning wk= 0,4 mm wk= 0,3 mm wk= 0,2 mm[N/mm2] model EC2 model EC2 model EC21602002402803203604006440271914118403220161210846281913107632251612108628171175432516128654Tabel 1 Maximale staafdiameter (mm) voor scheurbeperking: modelresultatenen afgeronde waarden. EC2-resultaat: zie tabel 7.2N.(14)Scheurvorming volgens Eurocode 23200982StaafafstandHet is ook mogelijk de uitdrukkingen zoals gebruikt bij hetbeschrijven van de staafdiameter zodanig te bewerken dat kanworden berekend bij welke staafafstand altijd wordt voldaanaan de scheurwijdte-eis, ongeacht de staafdiameter.Om uitdrukkingen in de gewenste vorm te verkrijgen, wordt determ (h d) in de uitdrukking voor de hoogte van de effectievedoorsnede nu niet uitgedrukt in de hoogte van de doorsnede h,maar wordt deze uitgedrukt in de staafdiameter:h d = ?? (21)Beschreven wordt het scheurgedrag van één staaf betonstaal,staafdiameter ?, onderdeel zijnde van één laag betonstaal metstaafafstand s, gelegen aan de onder- of bovenrand van eendoorsnede.De maximale scheurafstand is dan (vgl. (10) en (11) &NEN-EN 1992-1-1 vgl. (7.11)):sr,max = (3,4c + 0,425k1k2?s2,5??_______¼p?2) (22)Voor het verschil tussen de gemiddelde staal- en betonrek volgt(zie uitdrukkingen (6) en (11)):esm ecm =ss___Es(1 ktssr2___ss) =ss__Es[1 kts2,5?fct,eff (1 + ae¼p?2______s2,5??)____________________¼p?2ss]Met als voorwaarde (zie ook uitdrukking (7)):1 ktssr__ss= 0,6ss__Es(24)Het product van uitdrukkingen (22) en (23) is de berekendescheurwijdte. Het resultaat is een complexe uitdrukking waarintevens rekening moet worden gehouden met uitdrukking (24).Een parameterstudie wijst uit dat uitdrukking (24) meestalbepalend is voor de te hanteren gemiddelde rek. De uitdruk-kingen kunnen dan aanzienlijk vereenvoudigd worden:wk = (3,4c + 0,425k1k2?s2,5??_______¼p?2)ss__Es0,6De volgende waarden worden nu aangehouden:k1= 0,8 (geribd betonstaal; goede aanhechting)k2= 0,5 (buiging)h d = ?? = 3?3,4c = 85 mmDeze voorwaarde is toegevoegd omdat het resultaat van deuitdrukking dan aan de conservatieve kant is. Uiteraard maaktuitdrukking (18) het mogelijk op eenvoudige wijze tabellen op testellen voor andere toelaatbare scheurwijdten.Om de tabelresultaten te kunnen verkrijgen, moest een grootaantal variabelen en parameters bekend worden verondersteld.Een aantal hiervan zal niet of nauwelijks worden beïnvloed alseen andere constructie en/of belastingssituatie wordt beschouwd.Dat geldt voor:Es= 2 · 105N/mm2kt= 0,4k = 1,0k1= 0,83,4c = 85 mmAndere variabelen en parameters kunnen daarentegen aanzien-lijk in grootte wijzigen:fct,eff= 2,9 N/mm2kc= 0,4k2= 0,5k' =1h d = 0,1 hhcr= 0,5 hMet uitdrukking (17) kan relatief eenvoudig worden nagegaanwat de invloed is van een verandering in de grootte van een vari-abele. Uit deze uitdrukking worden de betreffende variabelen enparameters geselecteerd; de anderen worden vervangen door eenconstante C.? = C [fct,eff kchcr_______k'(h d)]0,5____k2Als sprake blijft van `buiging', maar deze wel eventueel in combina-tie met een normaaldrukkracht optreedt, blijft k' ongewijzigd(k' = 1). De variabele k2daarentegen wordt afhankelijk van derekken aan de randen van de gescheurd veronderstelde doorsnede(NEN-EN 1992-1-1 vgl. (7.13)). Als de grootte van deze en anderefactoren wijzigt, wordt de uitdrukking voor de staafdiameter:? = ?tabel[fct,eff____2,9kc___0,4hcr____0,5h1__k'0,1h______(h d)]0,5___k2= ?tabel [fct,eff____2,9kchcr_______2(h d)]0,5___k2Als sprake is van centrische trek treedt een geheel andere situatieop. Verondersteld wordt dat de wapening aan beide kanten vande doorsnede wordt meegeteld in de berekening van de wape-ningsverhouding van het effectieve trekspanningsgebied. Datbetekent echter wel dat ook de beide effectieve randzonesmoeten worden beschouwd. Het gevolg hiervan is dat k' = 2zodat hc,eff= 5(h d). Tevens is k2= 1. Het resultaat is:? = ?tabel [fct,eff____2,9kc___0,4hcr____0,5h1__20,1h______(h d)]0,5___1= ?tabel [fct,eff____2,9kchcr_______8(h d)](20)I LiteRatuuR1 NEN-EN 1992-1-1: Eurocode 2: Ontwerp en berekeningvan betonconstructies Deel 1-1: Algemene regels enregels voor gebouwen2 NEN-EN 1992-1-1/NB: Nationale bijlage bij NEN-EN1992-1-1.(19)(23)Scheurvorming volgens Eurocode 2 32009 835 De maximale staafdiameter toegestaan ombij een gegeven staalspanning nog te vol-doen aan een scheurwijdte-eisDe andere parameters, afgezien van k1, hebben nauwelijksinvloed op de toelaatbare staafafstand; hun invloed beperkt zichtot de uitdrukking voor de gemiddelde rek. Zoals reeds aange-toond moet hiervoor meestal de factor 0,6 worden gehanteerd;alleen `rechts onderin' de tabel is de invloed enigszins merkbaar.De limietwaarde van de scheurwijdte daarentegen heeft eengrote invloed op het resultaat. Dit blijkt al uit tabel 2 voorbijvoorbeeld wk= 0,4 mm en wk= 0,2 mm: Bij ss= 240 N/mm2is meer dan een verdubbeling van de staafafstand mogelijk.Naarmate de staalspanning hoger is, neemt deze factor nog toe.Bij het toetsen op een scheurwijdte die niet in tabel 2 isvermeld, kan de toelaatbare staafafstand worden berekend doorde maximale staafafstand voor een in de tabel vermelde scheur-wijdte te vermenigvuldigen met de verhouding:s = stabelwk,eis_____wk,tabelwaarin:wk,eis> wk,tabelens < 300 mmDe eerste voorwaarde is toegevoegd omdat de toelaatbare staaf-afstanden voor wk< 0,20 mm al snel zeer klein worden. Zo geeftwk= 0,1 mm alleen een bruikbaar resultaat voor ss= 160 N/mm2:s < 76 mm. Voor wk= 0,15 mm leveren slechts ss= 160 N/mm2(s < 140 mm); ss= 200 N/mm2(s < 102 mm) en ss= 240 N/mm2(s < 52 mm) bruikbare resultaten. Het verdient in die situatiesdan ook aanbeveling de scheurwijdte direct te berekenen.Tot besluitEurocode 2 `Beton' geeft tabellen voor staafdiameter en staafaf-stand waarmee relatief snel kan worden vastgesteld of aan eenscheurwijdtecriterium wordt voldaan. Om deze tabellen tekunen opstellen moesten echter de nodige aannames wordengedaan. De in de tabellen opgenomen resultaten kunnen duszowel een onder- als overschatting opleveren. Het kan dusraadzaam zijn een detailberekening uit te voeren. )Dan volgt:s =Es____0,6sswk 85___________1,62(25)Uitdrukking (25) is eenvoudig aan te passen als het verschiltussen de gemiddelde staal- en betonrekken (uitdrukking (23))groter is dan 60% van de staalrek in de scheur: de factor 0,6moet dan worden vergroot. Met uitdrukking (23) kan snel eenindruk worden verkregen van de grootte van deze factor.Daartoe wordt gerekend met:kt= 0,4 (langeduur belasting)fct,eff= 2,9 N/mm2ae= 20In tabel 2 is het resultaat van de berekeningen weergegeven.Alle berekeningen zijn uitgevoerd met Ø = 32 mm omdat degrootste staafdiameter tot de kleinste toelaatbare staafafstandblijkt te leiden. Ondanks dat de staafdiameter niet aanwezig isin uitdrukking (25) blijkt deze wel degelijk van invloed te zijn:De factor 0,6 uit uitdrukking (25) blijkt sneller waarden groterdan 0,6 aan te nemen, naarmate de staafdiameter groter is. Dithangt samen met de wapeningsverhouding in de effectievebetondoorsnede Ac,eff. Bij een toename van de wapeningsver-houding is de verhouding tussen de staalspanning in hetgebruiksstadium (ss) en de staalspanning in de scheur direct nascheurvorming (ssr2) groter. Hierdoor wordt de linker term inuitdrukking (24) eerder maatgevend; de factor 0,6 blijkt daneen onderschatting te zijn. In tabel 2 is aangegeven welkewaarden zijn gehanteerd.Uit tabel 2 wordt duidelijk dat Eurocode 2 een maximale staaf-afstand van 300 mm hanteert. Bij hoge staalspanningen enkleine limietwaarden van de scheurwijdte worden geen prak-tisch toepasbare staafafstanden gevonden; tabel 7.3N is daar`leeg'.In de afleiding is uitgegaan van zuivere buiging (k2= 0,5). Alssprake is van centrische trek is k2= 1,0. Het resultaat is bijbenadering een halvering van de toelaatbare staafafstand.staalspanning wk= 0,4 mm wk= 0,3 mm wk= 0,2 mm[N/mm2] model EC2 model EC2 model EC2160200240280320360462359290241205143 A300300250200150100333256205168113A76 B3002502001501005020515311974A44 B24C20015010050150706050403020100200 250 300 350 400 450staalspanning (N/mm2)staafdiameter(mm) wk= 0,4 mmwk= 0,3 mmwk= 0,2 mmTabel 2 Maximale staafafstand (mm) voor scheurbeperking: modelresultaten en afgeronde waar-den. EC2-resultaat: zie tabel 7.3N.5Factor 0,6 t.b.v. gemiddelde rek, behalve bij: A : factor 0,7; B : factor 0,8; C : factor 0,9
Reacties